A Novel Blind Separation Method in Magnetic Resonance Images

نویسندگان

  • Jianbin Gao
  • Qi Xia
  • Lixue Yin
  • Ji Zhou
  • Li Du
  • Yunfeng Fan
چکیده

A novel global search algorithm based method is proposed to separate MR images blindly in this paper. The key point of the method is the formulation of the new matrix which forms a generalized permutation of the original mixing matrix. Since the lowest entropy is closely associated with the smooth degree of source images, blind image separation can be formulated to an entropy minimization problem by using the property that most of neighbor pixels are smooth. A new dataset can be obtained by multiplying the mixed matrix by the inverse of the new matrix. Thus, the search technique is used to searching for the lowest entropy values of the new data. Accordingly, the separation weight vector associated with the lowest entropy values can be obtained. Compared with the conventional independent component analysis (ICA), the original signals in the proposed algorithm are not required to be independent. Simulation results on MR images are employed to further show the advantages of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Generating Synthetic Computed Tomography and Synthetic Magnetic Resonance (sMR: sT1w/sT2w) Images of the Brain Using Atlas-Based Method

Introduction: Nowadays, magnetic resonance imaging (MRI) in combination with computed-tomography (CT) is increasingly being used in radiation therapy planning. MR and CT images are applied to determine the target volume and calculate dose distribution, respectively. Since the use of these two imaging modalities causes registration uncertainty and increases department w...

متن کامل

A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network

Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...

متن کامل

Geometric distortion evaluation of magnetic resonance images by a new large field of view phantom for magnetic resonance based radiotherapy purposes

Background: The magnetic resonance imaging (MRI)-based radiotherapy planning method have been considered in recent years because of the advantages of MRI and the problems of planning with two images modality. The first step in MRI-based radiotherapy is to evaluate magnetic resonance (MR) images geometric distortion. Therefore, the present study aimed to evaluate system related geometric distort...

متن کامل

A novel approach to MRI Brain Tumor delineation with Independent Components & Finite Generalized Gaussian Mixture Models

Automated segmentation of tumors from a multispectral data set like that of the Magnetic Resonance Images (MRI) is challenging. Independent Component Analysis (ICA) and its variations for Blind Source Separation (BSS) have been employed in previous studies but have met with cumbersome obstacles due to its inherent limitations. Here we have approached the multispectral data set initially with fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014